
Persistence



Patterns for object creation
class Thing
{
public:

static Thing* create(const char* aFile);
~Thing();

private:

Thing();
bool init(const char* aFile);

}



Patterns for object creation
Thing* Thing::create(const char* aFile)
{

Thing* t(new Thing);

if(t && !t->init(aFile))
{

delete t;
t = NULL;

}

return t;
}



Patterns for object creation
● Object existence coupled to successful asset load



Patterns for object creation
● Object existence coupled to successful asset load
● Good:

– object can't exist if not properly initialized with valid asset!



Patterns for object creation
● Object existence coupled to successful asset load
● Good:

– object can't exist if not properly initialized with valid asset!
● Bad:

– object can't exist if not properly initialized with valid asset!



Patterns for object creation
● Object existence coupled to successful asset load
● Good:

– object can't exist if not properly initialized with valid asset!
● Bad:

– object can't exist if not properly initialized with valid asset!
– makes system data centric

● i.e. shifts focus from code/functionality to sources of data



Data sources
● When creating games, the need to edit data is everywhere!
● What kinds of sources can we use?

– Text files
● Human readable
● Many good tools available for view / edit
● Can be hard to parse / error prone

– Binary files
● Not human readable
● Requires tools to view and edit
● More computer friendly / optimized

– Databases
● Standard format
● Requires tools to view and edit

● Primary issue is often ease of edit



How is data authored?
● Games often use a mix of standard formats and custom formats
● Off the shelf tools

– Photoshop
● .psd for originals
● .tga, .dds for export

– Maya
● .mb for originals
● plugins / custom export?

– Text editors
● all other stuff, i.e. custom text formats

“We don't want to waste time building tools, and besides;
Guis are hard!”



Tool selection
● Some existing tools are very good for games

– Photoshop, Maya
– Let us export exactly the formats we want

● Text editors are also good
– Let us edit text

● But is text what our games want?
– Often we do major transformations at load time
– Text files are bad at enforcing constraints
– Lots of error checking code



Juice / JuiceMaker
● Massive Entertainment “Juice” data language

– One size fits all?
● JuiceMaker – one tool to rule them all

– Extensible with custom editors
● Ice exports

– Optimized, read-only data format for game
● Asset tracking

– Juice gave us a way to recursively track all assets
– Game depends on directory.ice, lists all other assets

● But still bad...
– Still lots of load time validation and transformation of data
– Very fragile, code is transparently dependent on .fruit headers

● Breaks at run-time, not compile time
– We didn't keep .fruit in version control...



A better way
● What if it was easy to build even more custom tools?

– Fewer data errors, i.e. not possible to enter bad data
– Easier to manage game-related constraints

● i.e. can only select certain values for a certain field
● IMGUI to the rescue

– Gui's are not hard!
– Can make several custom Controllers for specific editing needs
– Build these Controllers/editors into the game application

● MUCH faster edit-play-repeat cycle
● But how do we persist changes?



Custom tool persistence
● When data is authored in the game...

– The in-memory format is the ONLY thing we care about
– We really don't care how things are persisted...
– But they must be persisted...

● What if data was just magically persistent:
– i.e. values of variables remain across executions
– Implies some kind of robust instance identification scheme

???



Instance identification
● Borrow from relational theory

– Table = Class
– Row = Instance

● In a C++ program
– objects have the same class every execution
– objects DO NOT have the same address every execution
– but, they are logically the same objects as they were last time

● It turns out we can use:
– Class name as string
– Unsigned int as instance id

● This can be automatically generated



Persistent baseclass
● Use a template baseclass which gives us:

– Static class name as string
– Static linked list of all instances

● This allows the baseclass constructor to assign keys

template <class X>
class Persistent
{
public:

const unsigned int myKey;

protected:

Persistent(); //use class wide list to make sure keys are unique

private:

static X* ourFirstInstance;
static const char* ourClassName;
X* myNextInstance;

};



Usage with static allocation
● Statically allocated instances work fine

– Key enumeration in order of allocation
– Out of our control, but is the same every time
– Will mess up if you move objects around
class Map : public Persistent<Map>
{
};

//if you swap these declarations, objects will “change instance”
Map theMaps[64];
Map theOtherMaps[16];



Usage dynamic allocation
● Think in relational terms

– Class = Table, Instance = Instance
– Exploit class wide instance list

template <class X>
class Persistent
{
public:

static X* first(); //returns first instance
static X* find(const unsigned int aKey);
X* next(); //returns next instance

const unsigned int myKey;

protected:

Persistent(); //use class wide list to make sure keys are unique

private:

static X* ourFirstInstance;
static const char* ourClassName;
X* myNextInstance;

};



Usage dynamic allocation
● Allows for some nifty stuff
class Thing : public Persistent<Thing>
{
};

//application code
new Thing; //implicit key
new Thing(49); //explicit key

Thing* t = Thing::first();
while(t)
{

t->method();
t = t->next();

}

t = Thing::find(49);



How to actually persist
● Memory map member variables
● Store to “persistence context”
class Thing : public Persistent<Thing>
{
public:

int myValue;
String myString;

};

Thing::Thing()
:myValue(0)
,myString(“default”)
{

//general purpose mapping of any memory
map(“myValue”, &myValue, sizeof(myValue));

//string version
map(“myString”, myString);

//pull maps from context
loadMaps(context());

}

Thing::~Thing()
{

//push maps to context
saveMaps(context());

}



How to actually persist
● Baseclass exposes memory mapping functions

– Usually only need generic version (void*) and string version
● Persistence context implementations traverse memory maps

– default values / pull-model allows for transparent load failure
– In general, data is unique like this:

● Class name (string)
● Instance key (unsigned int)
● Member name (string)
● Member size (unsigned int)
● Member data (void*)

– Various implementations:
● One file per instance (49.Thing)
● One file per class (Thing.persistent)
● One file per context (Model.sfc)
● Map classes to actual relational database
● ?



Summary
● Clients can ignore details of persistence
● Basically this works like a language extension

– i.e. “this class is persistent, specifically these members”
● Application behaves like variable state is “as you left it”
● Game production gains

– Levels can be built incrementally
– Data can be tweaked more easily and often (due to in-app editing)

● Beware!
– Schema evolution

● You must migrate data via code, or build specific tools
– Use version control on context files, like any other asset
– You still need to track asset dependencies

● With one file per context, there are generally less files total


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

